女人性做爰100部免费|女人无遮挡裸交性做爰|女人裸体性做爰视频|一个上添B一个下添|一女三男做2爱A片免费

朱勝宇  副研究員  

研究方向:

所屬部門(mén):智能算法安全重點(diǎn)實(shí)驗(yàn)室

導(dǎo)師類(lèi)別:

聯(lián)系方式:zhushengyu@ict.ac.cn

個(gè)人網(wǎng)頁(yè):https://zhushyu.github.io/

簡(jiǎn)       歷:

2024年10月 — 今:中國(guó)科學(xué)院計(jì)算技術(shù)研究所,副研究員

2022年8月 — 2024年9月:九坤投資,AI LAB,研究員

2020年9月 — 2022年8月:華為-北京研究所,諾亞方舟實(shí)驗(yàn)室,主任研究員(Principal Researcher)

2017年9月 — 2020年9月:華為-香港研究所,諾亞方舟實(shí)驗(yàn)室,高級(jí)研究員(Senior Researcher)

2012年1月 — 2017年8月:美國(guó)雪城大學(xué)(Syracuse University),電子與計(jì)算機(jī)工程專(zhuān)業(yè),博士

2015年1月 — 2016年8月:美國(guó)雪城大學(xué)(Syracuse University),數(shù)學(xué)專(zhuān)業(yè),碩士

2006年9月 — 2010年7月:北京理工大學(xué),信息與電子學(xué)院,本科

主要論著:

期刊文章:

[1] Shaokang Dong, Hangyu Mao, Shangdong Yang, Shengyu Zhu, Wenbin Li, Jianye Hao, Yang Gao, WToE: Learning When to Explore in Multiagent Reinforcement Learning, IEEE Transactions on Cybernetics, 2024.

[2] Zhuangyan Fang**, Shengyu Zhu**, Jiji Zhang, Yue Liu, Zhitang Chen, Yangbo He, Low rank directed acyclic graphs and causal structure learning, IEEE Transactions on Neural Networks and Learning Systems (TNNLS), 2024. (** equal contribution)

[3] Ran Chen, Shoubo Hu, Zhitang Chen, Shengyu Zhu, et al., A unified framework for layout pattern analysis with deep causal estimation, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD), 2023.Zitong [4] Lu, Zhi Geng, Wei Li, Shengyu Zhu, Jinzhu Jia, Evaluating causes of effects by posterior effects of causes, Biometrika, 2022.(統(tǒng)計(jì)學(xué)四大期刊)

[5] Zhuangyan Fang, Yue Liu, Zhi Geng, Shengyu Zhu, Yangbo He, A local method for identifying causal relations under Markov equivalence, Artificial Intelligence (AIJ), 2022.

[6] Shengyu Zhu, Biao Chen, Zhitang Chen, and Pengfei Yang, Asymptotically optimal one- and two-sample testing with kernels, IEEE Transactions on Information Theory (TIT), April 2021.

[7] Shengyu Zhu and Biao Chen, Distributed detection in ad hoc networks through quantized consensus, IEEE Transactions on Information Theory (TIT), August 2018.

[8] Shengyu Zhu and Biao Chen, Quantized consensus by the ADMM: Probabilistic versus deterministic quantizers, IEEE Transactions on Signal Processing (TSP), April 2016.

[9] Ge Xu, Shengyu Zhu, and Biao Chen, Decentralized data reduction with quantization constraints, IEEE Transactions on Signal Processing (TSP), April 2014. (corresponding author)

會(huì)議文章:

[1] Ruiqi Zhao, Lei Zhang, Shengyu Zhu, Zitong Lu, Zhenhua Dong, Chaoliang Zhang, Zhi Geng, Yangbo He, Conditional counterfactual causal effect for individual attribution, UAI, 2023. (spotlight)

[2] Xiaoyu Tan, LIN Yong, Shengyu Zhu, Chao Qu, Xihe Qiu, Xu Yinghui, Peng Cui, Yuan Qi, Provably Invariance Learning without Domain Information”, ICML, 2023.

[3] Yong Lin, Shengyu Zhu, Lu Tan, Peng Cui, ZIN: When and how to learn invariance without environment partition?, NeurIPS, 2022. (spotlight; corresponding author)

[4] Junlong Lyu, Zhitang Chen, Chang Feng, Wenjing Cun, Shengyu Zhu, Yanhui Geng, Zhijie Xu, Para-CFlows: C^k-universal diffeomorphism approximators as superior neural surrogates, NeurIPS, 2022.

[5] Xiaopeng Zhang, Shoubo Hu, Zhitang Chen, Shengyu Zhu, et al., RCANet: Root cause analysis via latent variable interaction modeling for yield improvement, IEEE International Test Conference (ITC), 2022.

[6] Xinwei Shen, Shengyu Zhu, Jiji Zhang, Shoubo Hu, Zhitang Chen, Reframed GES with a neural conditional dependence measure, Conference on Uncertainty in Artificial Intelligence (UAI), 2022.

[7] Ruoyu Wang, Mingyang Yi, Zhitang Chen, Shengyu Zhu, Out-of-distribution generalization with causal invariant transformations, IEEE/CVF Computer Vision and Pattern Recognition Conference (CVPR), June 2022. (corresponding author)

[8] Iganvier Ng, Shengyu Zhu, Zhuangyan Fang, Haoyang Li, Zhitang Chen, Jun Wang, Masked gradient-based causal structure learning, SIAM Conference on Data Mining (SDM), May 2022. (corresponding author)

[9] Ran Chen, Shoubo Hu, Zhitang Chen, Shengyu Zhu, et al., A unified framework for layout pattern analysis with deep causal estimation, IEEE/ACM International Conference On Computer Aided Design (ICCAD), November 2021.

[10] Xiaoqiang Wang, Yali Du, Shengyu Zhu, Liangjun Ke, Zhitang Chen, Jianye Hao, Jun Wang, Ordering-based causal discovery with reinforcement learning, International Joint Conference on Artificial Intelligence (IJCAI), July 2021. (corresponding author)

[11] Shengyu Zhu, Ignavier Ng, and Zhitang Chen, Causal discovery with reinforcement learning, International Conference on Learning Representations (ICLR), Addis Ababa, Ethiopia, April 2020. (highest review score and oral presentation)

[12] Shengyu Zhu, Biao Chen, Pengfei Yang, and Zhitang Chen, Universal hypothesis testing with kernels: Asymptotically optimal tests for goodness of fit, International Conference on Artificial Intelligence and Statistics (AISTATS), Naha, Okinawa, Japan, April 2019.

[13] Shengyu Zhu and Biao Chen, Distributed detection over connected networks via one-bit quantizer, IEEE International Symposium on Information Theory (ISIT), Barcelona, Spain, July 2016.

[14] Shengyu Zhu and Biao Chen, Distributed average consensus with bounded quantization, IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Edinburgh, UK, July 2016.

[15] Shengyu Zhu, Mingyi Hong, and Biao Chen, Quantized consensus ADMM for multi-agent distributed optimization, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, March 2016.

[16] Shengyu Zhu and Biao Chen, Distributed average consensus with deterministic quantization: an ADMM approach, IEEE Global Conference on Signal and Information Processing (GlobalSIP), Orlando, FL, December 2015. (IEEE travel grant)

[17] Shengyu Zhu, Ge Xu, and Biao Chen, Are global sufficient statistics always sufficient: the impact of quantization on decentralized data reduction, Asilomar Conference on Signals, Systems, and Computers (Asilomar), Monterey, CA, November 2013. (invited paper)

[18] Shengyu Zhu and Biao Chen, Data reduction in tandem fusion systems, IEEE China Summit and International Conference on Signal and Information Processing (ChinaSIP), Beijing, China, July 2013.

[19] Shengyu Zhu, Earnest Akofor, and Biao Chen, Interactive distributed detection with conditionally independent observations, IEEE Wireless Communications and Networking Conference (WCNC), Shanghai, China, April 2013.

專(zhuān)利:

[1] “一種通信網(wǎng)絡(luò)故障的根因定位方法及相關(guān)設(shè)備”,授權(quán),CN113923099B(對(duì)應(yīng)SDM’22論文)

[2] “一種通信方法及通信裝置”,實(shí)質(zhì)審查,CN116192330A (對(duì)應(yīng)INFOCOM投稿論文)

[3] “一種數(shù)據(jù)處理方法及相關(guān)設(shè)備”,實(shí)質(zhì)審查,CN115905932A (對(duì)應(yīng)CVPR’22 論文)

[4] “一種芯片故障識(shí)別方法及相關(guān)設(shè)備”,授權(quán),CN113657022B,(對(duì)應(yīng)ICCAD’21 和TCAD’22論文)

[5] “缺陷根因確定方法、裝置和存儲(chǔ)介質(zhì)”,實(shí)質(zhì)審查,CN115238641A(對(duì)應(yīng)ITC’22 論文)

科研項(xiàng)目:

獲獎(jiǎng)及榮譽(yù):

優(yōu)秀審稿人(Top Reviewer),UAI,2023

產(chǎn)品線(xiàn)重大挑戰(zhàn)問(wèn)題攻關(guān)獎(jiǎng)(團(tuán)隊(duì)),2012 實(shí)驗(yàn)室,華為,2021

商業(yè)貢獻(xiàn)獎(jiǎng)(團(tuán)隊(duì)), 諾亞方舟實(shí)驗(yàn)室,2012 實(shí)驗(yàn)室,華為,2021

“計(jì)算系統(tǒng)理論與技術(shù)委員會(huì)”優(yōu)秀團(tuán)隊(duì)獎(jiǎng),2012 實(shí)驗(yàn)室,華為,2021

優(yōu)秀實(shí)踐獎(jiǎng)(因果學(xué)習(xí)研究), 2012 實(shí)驗(yàn)室,華為,2020

創(chuàng)新先鋒一等獎(jiǎng),2012 實(shí)驗(yàn)室,華為,2020

總裁個(gè)人獎(jiǎng),網(wǎng)絡(luò)產(chǎn)品線(xiàn),華為,2019

優(yōu)秀博士畢業(yè)生(All University Doctoral Prize),美國(guó)雪城大學(xué),2018

吉水县| 临泉县| 昌邑市| 宁陵县| 绵阳市| 华坪县| 铜陵市| 汉源县| 台南县| 新竹县| 宜昌市| 稻城县| 榆树市| 泰来县| 德庆县| 石棉县| 上高县| 无为县| 东海县| 庐江县| 永靖县| 平安县| 石棉县| 扎兰屯市| 淮北市| 江孜县| 洛宁县| 五常市| 保亭| 双牌县| 广水市| 关岭| 监利县| 贵州省| 北宁市| 大港区| 栾川县| 长宁区| 苍梧县| 普格县| 黔西县|